Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry

E. J. Paul, A. Bhattacharjee, M. Landreman, D. Alex, J. L. Velasco, R. Nies

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Collisionless physics primarily determines the transport of fusion-born alpha particles in 3D equilibria. Several transport mechanisms have been implicated in stellarator configurations, including stochastic diffusion due to class transitions, ripple trapping, and banana drift-convective orbits. Given the guiding center dynamics in a set of six quasihelical and quasiaxisymmetric equilibria, we perform a classification of trapping states and transport mechanisms. In addition to banana drift convection and ripple transport, we observe substantial non-conservation of the parallel adiabatic invariant which can cause losses through diffusive banana tip motion. Furthermore, many lost trajectories undergo transitions between trapping classes on longer time scales, either with periodic or irregular behavior. We discuss possible optimization strategies for each of the relevant transport mechanisms. We perform a comparison between fast ion losses and metrics for the prevalence of mechanisms such as banana-drift convection (Velasco et al 2021 Nucl. Fusion 61 116059), transitioning orbits, and wide orbit widths. Quasihelical configurations are found to have natural protection against ripple-trapping and diffusive banana tip motion leading to a reduction in prompt losses.

Original languageEnglish (US)
Article number126054
JournalNuclear Fusion
Volume62
Issue number12
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Keywords

  • fast ions
  • optimization
  • stellarators

Fingerprint

Dive into the research topics of 'Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry'. Together they form a unique fingerprint.

Cite this