Abstract
At the end of 2020 November, two coronal mass ejections (CMEs) erupted from the Sun and propagated through the interplanetary medium in the direction of Parker Solar Probe while the spacecraft was located at ∼0.81 au. The passage of these interplanetary CMEs (ICMEs) starting on November 29 (DOY 334) produced the largest enhancement of energetic ions and electrons observed by the Integrated Science Investigation of the Sun (ISo˙IS) energetic particle instrument suite on board Parker Solar Probe during the mission's first eight orbits. This was also the first spatially widespread solar energetic particle event observed in solar cycle 25. We investigate several key characteristics of the energetic electron event including the time profile and anisotropy distribution of near-relativistic electrons as measured by ISo˙IS's low-energy Energetic Particle Instrument (EPI-Lo) and compare these observations with contextual data from the Parker Solar Probe Fields Experiment magnetometer. These are the first electron anisotropy measurements from ISo˙IS/EPI-Lo, demonstrating that the instrument can successfully produce these measurements. We find that the electron count rate peaks at the time of the shock driven by the faster of the two ICMEs, implying that the shock parameters of this ICME are conducive to the acceleration of electrons. Additionally, the angular distribution of the electrons during the passage of the magnetic clouds associated with the ICMEs shows significant anisotropy, with electrons moving primarily parallel and antiparallel to the local magnetic field as well as bidirectionally, providing an indication of the ICME's magnetic topology and connectivity to the Sun or magnetic structures in the inner heliosphere.
Original language | English (US) |
---|---|
Article number | 119 |
Journal | Astrophysical Journal |
Volume | 919 |
Issue number | 2 |
DOIs | |
State | Published - Oct 1 2021 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science