Abstract
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential energy surface (PES). Here we develop Deep Potential - Smooth Edition (DeepPot-SE), an end-to-end machine learning-based PES model, which is able to efficiently represent the PES of a wide variety of systems with the accuracy of ab initio quantum mechanics models. By construction, DeepPot-SE is extensive and continuously differentiable, scales linearly with system size, and preserves all the natural symmetries of the system. Further, we show that DeepPot-SE describes finite and extended systems including organic molecules, metals, semiconductors, and insulators with high fidelity.
Original language | English (US) |
---|---|
Pages (from-to) | 4436-4446 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing