Abstract
Traditional models of category learning in psychology focus on representation at the category level as opposed to the stimulus level, even though the two are likely to interact. The stimulus representations employed in such models are either hand-designed by the experimenter, inferred circuitously from human judgments, or borrowed from pretrained deep neural networks that are themselves competing models of category learning. In this work, we extend classic prototype and exemplar models to learn both stimulus and category representations jointly from raw input. This new class of models can be parameterized by deep neural networks (DNN) and trained end-to-end. Following their namesakes, we refer to them as Deep Prototype Models, Deep Exemplar Models, and Deep Gaussian Mixture Models. Compared to typical DNNs, we find that their cognitively inspired counterparts both provide better intrinsic fit to human behavior and improve ground-truth classification.
Original language | English (US) |
---|---|
Pages | 634-640 |
Number of pages | 7 |
State | Published - 2020 |
Event | 42nd Annual Meeting of the Cognitive Science Society: Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020 - Virtual, Online Duration: Jul 29 2020 → Aug 1 2020 |
Conference
Conference | 42nd Annual Meeting of the Cognitive Science Society: Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020 |
---|---|
City | Virtual, Online |
Period | 7/29/20 → 8/1/20 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Computer Science Applications
- Human-Computer Interaction
- Cognitive Neuroscience
Keywords
- Gaussian mixture models
- category learning
- deep neural networks
- exemplar models
- prototype models