Encoding a qubit into multilevel subspaces

Matthew Grace, Constantin Brif, Herschel Rabitz, Lan Walmsley, Robert Kosut, Daniel Lidar

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

We present a formalism for encoding the logical basis of a qubit into subspaces of multiple physical levels. The need for this multilevel encoding (MLE) arises naturally in situations where the speed of quantum operations exceeds the limits imposed by the addressability of individual energy levels of the qubit physical system. A basic feature of the MLE formalism is the logical equivalence of different physical states and correspondingly, of different physical transformations. This logical equivalence is a source of a significant flexibility in designing logical operations, while the multilevel structure inherently accommodates fast and intense broadband controls thereby facilitating faster quantum operations. Another important practical advantage of MLE is the ability to maintain full quantum-computational fidelity in the presence of mixing and decoherence within encoding subspaces. The formalism is developed in detail for single-qubit operations and generalized for multiple qubits. As an illustrative example, we perform a simulation of closed-loop optimal control of single-qubit operations for a model multilevel system, and subsequently apply these operations at finite temperatures to investigate the effect of decoherence on operational fidelity.

Original languageEnglish (US)
Article number35
JournalNew Journal of Physics
Volume8
DOIs
StatePublished - Mar 9 2006

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Encoding a qubit into multilevel subspaces'. Together they form a unique fingerprint.

Cite this