Elucidation of the selectivity of proton-dependent electrocatalytic CO 2 reduction by fac -Re(bpy)(CO)3Cl

John A. Keith, Kyle A. Grice, Clifford P. Kubiak, Emily A. Carter

Research output: Contribution to journalArticlepeer-review

208 Scopus citations


A complete mechanism for the proton-dependent electrocatalytic reduction of CO2 to CO by fac-Re(bpy)(CO)3Cl that is consistent with experimental observations has been developed using first principles quantum chemistry. Calculated one-electron reduction potentials, nonaqueous pK a's, reaction free energies, and reaction barrier heights provide deep insight into the complex mechanism for CO2 reduction as well as the origin of selectivity for this catalyst. Protonation and then reduction of a metastable Re-CO2 intermediate anion precedes Brønsted-acid- catalyzed C-O cleavage and then rapid release of CO at negative applied potentials. Conceptually understanding the mechanism of this rapid catalytic process provides a useful blueprint for future work in artificial photosynthesis.

Original languageEnglish (US)
Pages (from-to)15823-15829
Number of pages7
JournalJournal of the American Chemical Society
Issue number42
StatePublished - Oct 23 2013

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Elucidation of the selectivity of proton-dependent electrocatalytic CO <sub>2</sub> reduction by fac -Re(bpy)(CO)<sub>3</sub>Cl'. Together they form a unique fingerprint.

Cite this