Abstract
It is commonly believed that diverse communities better resist invasion by exotic species than do simple communities. We examined the history of this notion, and evaluated theoretical and empirical work linking diversity and invasions. We found that much of the historical work that has contributed to the perception that diverse communities are less invasible, including Elton's observations and MacArthur's species-packing and diversity-stability models, is based on controversial premises. Nevertheless, more recent theoretical studies consistently supported the predicted negative relationship between diversity and invasibility. The results of empirical studies, however, were decidedly mixed. Constructed community studies directly manipulating diversity found both positive and negative effects of diversity on invasibility in both field and microcosm settings. Other empirical studies tracking the assembly of ecological communities generally suggested that communities decline in invasibility as species accumulate over time, though the role of diversity itself was often ambiguous. Studies of the spatial correlation between diversity and invasion and studies experimentally adding invaders to natural systems indicated that diverse communities tend to be more invasible. We argue that these results most likely reflect environmental factors spatially covarying with diversity in natural communities (e.g. resources, disturbance), and not the effects of diversity itself as uncovered by constructed community studies. Nevertheless, the consistent positive relationship between exotic species abundance and resident species diversity found in spatial pattern studies suggests that invaders and resident species are more similar than often believed, and the implications of this for theories of invasion are discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 15-26 |
Number of pages | 12 |
Journal | Oikos |
Volume | 87 |
Issue number | 1 |
DOIs | |
State | Published - Oct 1999 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Ecology, Evolution, Behavior and Systematics