Abstract
We present our understanding of the electronic energy landscape and dynamics of charge separation at organic donor/acceptor interfaces. The organic/organic interface serves as a valuable point of reference and plays an important role in emerging electronic and optoelectronic applications, particularly organic photovoltaics (OPVs). The key issue on electronic structure at organic donor/acceptor interfaces is the difference in the lowest unoccupied molecular orbitais or that in the highest occupied molecular orbitais. This difference represents an energy gain needed to overcome the exciten binding energy in a charge-separation process in OPV. A sufficiently large energy gain favors the formation of charge transfer (CT) states that are energetically close to the charge-separation state. At an organic donor/acceptor interface in an OPV device, these high-energy CT states, also called hot CT excitons, are necessary intermediates in a successful charge-separation process.
Original language | English (US) |
---|---|
Pages (from-to) | 443-448 |
Number of pages | 6 |
Journal | MRS Bulletin |
Volume | 35 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2010 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Physical and Theoretical Chemistry