Electronic band structures of the alkali metals and of the noble metals and their α-phase alloys

M. H. Cohen, V. Heine

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

In the monovalent metals the electronic band structure is strongly affected by the size of the band gap Es-Ep at the Brillouin zone faces, a large gap implying a large distortion of the Fermi surface. Here Es and Ep are the energies of the purely s-like and p-like states on the zone faces. We have made crude estimates of Es-Ep for the alkali and noble metals, in terms of the s-p excitation energy Δsp of the free atoms. These suggest a single model which correlates most of the experimental information about the band structures of these metals. In particular the Fermi surface of lithium appears to make considerable contact with the zone faces. In the α-phase alloys of the noble metals, the solute always has a larger value of Δsp than the solvent, which raises the energy Ep relative to Es. The Fermi surface becomes more nearly spherical in copper alloys than in copper, since Ep<Es, whereas it distorts further in the gold alloys (Ep>Es). This accounts for many Knight shift, electronic specific heat, magnetic susceptibility and other data on these alloys. Furthermore it provides the extension of Jones' explanation of the Hume-Rothery rule demanded by the non-spherical Fermi surface in pure copper and gold.

Original languageEnglish (US)
Pages (from-to)395-434
Number of pages40
JournalAdvances in Physics
Volume7
Issue number28
DOIs
StatePublished - Oct 1958
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Electronic band structures of the alkali metals and of the noble metals and their α-phase alloys'. Together they form a unique fingerprint.

Cite this