Electron Spin Resonance of P Donors in Isotopically Purified Si Detected by Contactless Photoconductivity

Philipp Ross, Brendon C. Rose, Cheuk C. Lo, Mike L.W. Thewalt, Alexei M. Tyryshkin, Stephen A. Lyon, John J.L. Morton

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Coherence times of electron spins bound to phosphorus donors have been measured, using a standard Hahn echo technique, to be up to 20 ms in isotopically pure silicon with [P]=1014cm-3 and at temperatures ≤4K. Although such times are exceptionally long for electron spins in the solid state, they are nevertheless limited by donor electron spin-spin interactions. Suppressing such interactions requires even lower donor concentrations, which lie below the detection limit for typical ESR spectrometers. Here we describe an alternative method for phosphorus donor ESR detection, exploiting the spin-to-charge conversion provided by the optical donor-bound-exciton transition. We characterize the method and its dependence on laser power and use it to measure a coherence time of T2=130ms for one of the purest silicon samples grown to date ([P]=5×1011cm-3). We then benchmark this result using an alternative application of the donor-bound-exciton transition: optically polarizing the donor spins before using conventional ESR detection at 1.7 K for a sample with [P]=4×1012cm-3, and measuring in this case a T2 of 350 ms. In both cases, T2 is obtained after accounting for the effects of magnetic field noise, and the use of more stable (e.g., permanent) magnets could yield even longer coherence times.

Original languageEnglish (US)
Article number054014
JournalPhysical Review Applied
Volume11
Issue number5
DOIs
StatePublished - May 6 2019

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Electron Spin Resonance of P Donors in Isotopically Purified Si Detected by Contactless Photoconductivity'. Together they form a unique fingerprint.

Cite this