Abstract
Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law, it remains unclear how electrons are accelerated to high energies and what processes determine the power-law index δ. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the ‘above-the-looptop’ solar hard X-ray source and the plasma sheet in Earth’s magnetotail), the spectra are typically soft (δ≳ 4). This is in contrast to the typically hard spectra (δ≲ 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger non-thermal fraction of electron energies when compared to magnetic reconnection. A caveat is that during active times in Earth’s magnetotail, δ values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.
Original language | English (US) |
---|---|
Article number | 82 |
Journal | Space Science Reviews |
Volume | 214 |
Issue number | 5 |
DOIs | |
State | Published - Aug 1 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Magnetic reconnection
- Magnetotail
- Particle acceleration
- Shocks
- Solar flares
- Solar wind