Electromechanical Properties of a Ceramic d31-Gradient Flextensional Actuator

Xiaoping Li, James S. Vartuli, David L. Milius, Ilhan A. Aksay, Wan Y. Shih, Wei Heng Shih

Research output: Contribution to journalArticle

42 Scopus citations

Abstract

We examined the static axial displacement of a ceramic d31-gradient flextensional transducer both experimentally and theoretically. Two lead zirconate titanate systems, (PZT)/PZT and PZT/ZnO, were studied. The PZT/PZT transducers consisted of two PZT layers of different d31 coefficients. The PZT/ZnO transducers consisted of a PZT and a ZnO layer. The PZT/PZT transducers were of an inner-type dome structure. The PZT/ZnO transducers were either flat, or had an inner- or outer-type dome structure by varying the thickness ratio between the two layers or the Sb2O3 content in the ZnO layer. An inner (outer)-type transducer has the large-d31 layer on the inside (outside) of the dome structure. For the PZT/PZT transducers, the axial displacement varied with the thickness ratio and reached a maximum when the two layers had similar thickness, in agreement with the calculations. With a conductive nonpiezoelectric layer, the PZT/ZnO transducers had higher axial displacements, which varied with the thickness ratio and the Sb2O3 content, than the PZT/PZT transducers. With 6 wt % Sb2O3, the transducers were flat and the measured displacements at various thickness ratios were similar to the calculated values. With 4 wt% Sb2O3, the transducers were of an outer type. The measured axial displacements were about twice the calculated values, suggesting an enhanced d31 value because of the tensile bending stress in the PZT layer. The scaled axial displacements of the PZT/ZnO transducers with 4 wt% Sb2O3 were comparable to that of the Rainbow transducers. With 8 wt% Sb2O3, the displacements of transducers with thin PZT layers (≤0.3 mm) were lower than the calculated values because of increased conductivity in the PZT layer.

Original languageEnglish (US)
Pages (from-to)996-1003
Number of pages8
JournalJournal of the American Ceramic Society
Volume84
Issue number5
DOIs
StatePublished - May 2001

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Electromechanical Properties of a Ceramic d<sub>31</sub>-Gradient Flextensional Actuator'. Together they form a unique fingerprint.

  • Cite this