Abstract
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics 39Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 ± 0.09) cm2/s for a selection of 140 keV electron recoil events in 200 V/cm drift field and 2.8 kV/cm extraction field. To study the systematics of our measurement we examine data sets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 ± 0.12) cm2/s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
Original language | English (US) |
---|---|
Pages (from-to) | 23-34 |
Number of pages | 12 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 904 |
DOIs | |
State | Published - Oct 1 2018 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Instrumentation
Keywords
- Electron diffusion constant
- Liquid argon
- Time projection chamber
Access to Document
Fingerprint Dive into the research topics of 'Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC'. Together they form a unique fingerprint.
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC. / Agnes, P.; Albuquerque, I. F.M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Ave, M. P.; Back, H. O.; Baldin, B.; Batignani, G.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Caminata, A.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; D'Urso, D.; Davini, S.; De Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Rosa, G.; De Vincenzi, M.; Demontis, P.; Derbin, A. V.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Ghiano, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Gulino, M.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kochanek, I.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Messina, A.; Meyers, P. D.; Milincic, R.; Monte, A.; Morrocchi, M.; Mount, B. J.; Muratova, V. N.; Musico, P.; Navrer Agasson, A.; Nozdrina, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pandola, L.; Pantic, E.; Paoloni, E.; Pazzona, F.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Qian, H.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Samoylov, O.; Sands, W.; Sanfilippo, S.; Sant, M.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Sheshukov, A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Waldrop, T. J.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 904, 01.10.2018, p. 23-34.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
AU - Agnes, P.
AU - Albuquerque, I. F.M.
AU - Alexander, T.
AU - Alton, A. K.
AU - Asner, D. M.
AU - Ave, M. P.
AU - Back, H. O.
AU - Baldin, B.
AU - Batignani, G.
AU - Biery, K.
AU - Bocci, V.
AU - Bonfini, G.
AU - Bonivento, W.
AU - Bossa, M.
AU - Bottino, B.
AU - Budano, F.
AU - Bussino, S.
AU - Cadeddu, M.
AU - Cadoni, M.
AU - Calaprice, F.
AU - Caminata, A.
AU - Canci, N.
AU - Candela, A.
AU - Caravati, M.
AU - Cariello, M.
AU - Carlini, M.
AU - Carpinelli, M.
AU - Catalanotti, S.
AU - Cataudella, V.
AU - Cavalcante, P.
AU - Cavuoti, S.
AU - Chepurnov, A.
AU - Cicalò, C.
AU - Cocco, A. G.
AU - Covone, G.
AU - D'Angelo, D.
AU - D'Incecco, M.
AU - D'Urso, D.
AU - Davini, S.
AU - De Candia, A.
AU - De Cecco, S.
AU - De Deo, M.
AU - De Filippis, G.
AU - De Rosa, G.
AU - De Vincenzi, M.
AU - Demontis, P.
AU - Derbin, A. V.
AU - Devoto, A.
AU - Di Eusanio, F.
AU - Di Pietro, G.
AU - Dionisi, C.
AU - Edkins, E.
AU - Fan, A.
AU - Fiorillo, G.
AU - Fomenko, K.
AU - Franco, D.
AU - Gabriele, F.
AU - Gabrieli, A.
AU - Galbiati, C.
AU - Ghiano, C.
AU - Giagu, S.
AU - Giganti, C.
AU - Giovanetti, G. K.
AU - Goretti, A. M.
AU - Granato, F.
AU - Gromov, M.
AU - Guan, M.
AU - Guardincerri, Y.
AU - Gulino, M.
AU - Hackett, B. R.
AU - Herner, K.
AU - Hughes, D.
AU - Humble, P.
AU - Hungerford, E. V.
AU - Ianni, An
AU - James, I.
AU - Johnson, T. N.
AU - Keeter, K.
AU - Kendziora, C. L.
AU - Kochanek, I.
AU - Koh, G.
AU - Korablev, D.
AU - Korga, G.
AU - Kubankin, A.
AU - Kuss, M.
AU - Li, X.
AU - Lissia, M.
AU - Loer, B.
AU - Longo, G.
AU - Ma, Y.
AU - Machado, A. A.
AU - Machulin, I. N.
AU - Mandarano, A.
AU - Mari, S. M.
AU - Maricic, J.
AU - Martoff, C. J.
AU - Messina, A.
AU - Meyers, P. D.
AU - Milincic, R.
AU - Monte, A.
AU - Morrocchi, M.
AU - Mount, B. J.
AU - Muratova, V. N.
AU - Musico, P.
AU - Navrer Agasson, A.
AU - Nozdrina, A.
AU - Oleinik, A.
AU - Orsini, M.
AU - Ortica, F.
AU - Pagani, L.
AU - Pallavicini, M.
AU - Pandola, L.
AU - Pantic, E.
AU - Paoloni, E.
AU - Pazzona, F.
AU - Pelczar, K.
AU - Pelliccia, N.
AU - Pocar, A.
AU - Pordes, S.
AU - Qian, H.
AU - Razeti, M.
AU - Razeto, A.
AU - Reinhold, B.
AU - Renshaw, A. L.
AU - Rescigno, M.
AU - Riffard, Q.
AU - Romani, A.
AU - Rossi, B.
AU - Rossi, N.
AU - Sablone, D.
AU - Samoylov, O.
AU - Sands, W.
AU - Sanfilippo, S.
AU - Sant, M.
AU - Savarese, C.
AU - Schlitzer, B.
AU - Segreto, E.
AU - Semenov, D. A.
AU - Sheshukov, A.
AU - Singh, P. N.
AU - Skorokhvatov, M. D.
AU - Smirnov, O.
AU - Sotnikov, A.
AU - Stanford, C.
AU - Suffritti, G. B.
AU - Suvorov, Y.
AU - Tartaglia, R.
AU - Testera, G.
AU - Tonazzo, A.
AU - Trinchese, P.
AU - Unzhakov, E. V.
AU - Verducci, M.
AU - Vishneva, A.
AU - Vogelaar, B.
AU - Wada, M.
AU - Waldrop, T. J.
AU - Walker, S.
AU - Wang, H.
AU - Wang, Y.
AU - Watson, A. W.
AU - Westerdale, S.
AU - Wojcik, M. M.
AU - Xiang, X.
AU - Xiao, X.
AU - Yang, C.
AU - Ye, Z.
AU - Zhu, C.
AU - Zuzel, G.
N1 - Funding Information: This work was supported by the US NSF (Grants PHY-0919363 , PHY-1004072 , PHY-1004054 , PHY-1242585 , PHY-1314483 , PHY-1314507 and associated collaborative grants; grants PHY-1211308 and PHY-1455351 ), the Italian Istituto Nazionale di Fisica Nucleare (INFN) , the US DOE (Contract Nos. DE-FG02-91ER40671 and DE-AC02-07CH11359 ), the Russian RSF (Grant No 16-12-10369 ), and the Polish NCN (Grant UMO-2014/15/B/ST2/02561 ). We thank the staff of the Fermilab Particle Physics, Scientific and Core Computing Divisions for their support. We acknowledge the financial support from the UnivEarthS Labex program of Sorbonne Paris Cité ( ANR-10-LABX-0023 and ANR-11-IDEX-0005-02 ), from São Paulo Research Foundation (FAPESP) grant ( 2016/09084-0 ), and from Foundation for Polish Science (grant No. TEAM/2016-2/17 ).
PY - 2018/10/1
Y1 - 2018/10/1
N2 - We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics 39Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 ± 0.09) cm2/s for a selection of 140 keV electron recoil events in 200 V/cm drift field and 2.8 kV/cm extraction field. To study the systematics of our measurement we examine data sets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 ± 0.12) cm2/s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
AB - We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics 39Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 ± 0.09) cm2/s for a selection of 140 keV electron recoil events in 200 V/cm drift field and 2.8 kV/cm extraction field. To study the systematics of our measurement we examine data sets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 ± 0.12) cm2/s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
KW - Electron diffusion constant
KW - Liquid argon
KW - Time projection chamber
UR - http://www.scopus.com/inward/record.url?scp=85049961328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049961328&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2018.06.077
DO - 10.1016/j.nima.2018.06.077
M3 - Article
AN - SCOPUS:85049961328
VL - 904
SP - 23
EP - 34
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
ER -