Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow

Ching Yao Lai, Zhong Zheng, Emilie Dressaire, Guy Z. Ramon, Herbert E. Huppert, Howard A. Stone

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Cracks filled with fluid propagation when the pressurized fluid is injected into the crack. Subsequently, when the fluid inlet is exposed to a lower pressure, the fluid flows backwards (backflow) and the crack closes due to the elastic relaxation of the solid. Here we study the dynamics of the crack closure during the backflow. We find that the crack radius remains constant and the fluid volume in the crack decreases with time in a power-law manner at late times. The balance between the viscous stresses in the fluid and elastic stresses in the fluid and the elastic stresses in the solid yields a scaling law that agrees with the experimental results for different fluid viscosities, Young's moduli of the solid, and initial radii of the cracks. Furthermore, we visualize the time-dependent crack shapes, and the convergence to a universal dimensionless shape demonstrates the self-similarity of the crack shapes during the backflow process.

Original languageEnglish (US)
Article number268001
JournalPhysical review letters
Volume117
Issue number26
DOIs
StatePublished - Dec 23 2016

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow'. Together they form a unique fingerprint.

Cite this