TY - GEN
T1 - Eficiency of plasma heating with beating electrostatic waves
AU - Jorns, Benjamin
AU - Choueiri, Edgar Yazid
PY - 2011/12/1
Y1 - 2011/12/1
N2 - A one-dimensional eficiency model is derived for the heating of a uniformly magnetized plasma with beating electrostatic waves (BEW). Due to the non-resonant nature of this process, it is believed to offer improvements over existing resonant schemes for plasma heating in electric propulsion applications. A simplified energy transport equation with a Fokker-Planck diflusion operator for the interaction of the BEW with a magnetized plasma is used to predict the eficiency of heating in a rectilinear geometry for waves with phase velocities larger than the ion thermal velocity. An explicit calculation for eficiency is performed for the case where the BEW consist of two electrostatic ion cyclotron waves. The resulting expression matches the observed heating eficiency in a BEW laboratory experiment to within an order of magnitude, and the low eficiency values observed in this laboratory experiment are shown to be the result of an unfavorable set of plasma parameters where the ratio of wave phase velocity to ion thermal velocity is exceptionally high. In order to examine the effcacy of BEWH for an electrothermal propulsion concept, the plasma parameter space of a typical radiofrequency plasma propulsion concept with a lower ratio of wave to ion velocity is investigated. It is shown that under these conditions, BEW heating is capable of reaching high effciency levels.
AB - A one-dimensional eficiency model is derived for the heating of a uniformly magnetized plasma with beating electrostatic waves (BEW). Due to the non-resonant nature of this process, it is believed to offer improvements over existing resonant schemes for plasma heating in electric propulsion applications. A simplified energy transport equation with a Fokker-Planck diflusion operator for the interaction of the BEW with a magnetized plasma is used to predict the eficiency of heating in a rectilinear geometry for waves with phase velocities larger than the ion thermal velocity. An explicit calculation for eficiency is performed for the case where the BEW consist of two electrostatic ion cyclotron waves. The resulting expression matches the observed heating eficiency in a BEW laboratory experiment to within an order of magnitude, and the low eficiency values observed in this laboratory experiment are shown to be the result of an unfavorable set of plasma parameters where the ratio of wave phase velocity to ion thermal velocity is exceptionally high. In order to examine the effcacy of BEWH for an electrothermal propulsion concept, the plasma parameter space of a typical radiofrequency plasma propulsion concept with a lower ratio of wave to ion velocity is investigated. It is shown that under these conditions, BEW heating is capable of reaching high effciency levels.
UR - http://www.scopus.com/inward/record.url?scp=84880671552&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880671552&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84880671552
SN - 9781600869495
T3 - 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011
BT - 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011
T2 - 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011
Y2 - 31 July 2011 through 3 August 2011
ER -