Eficiency of plasma heating with beating electrostatic waves

Benjamin Jorns, Edgar Yazid Choueiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

A one-dimensional eficiency model is derived for the heating of a uniformly magnetized plasma with beating electrostatic waves (BEW). Due to the non-resonant nature of this process, it is believed to offer improvements over existing resonant schemes for plasma heating in electric propulsion applications. A simplified energy transport equation with a Fokker-Planck diflusion operator for the interaction of the BEW with a magnetized plasma is used to predict the eficiency of heating in a rectilinear geometry for waves with phase velocities larger than the ion thermal velocity. An explicit calculation for eficiency is performed for the case where the BEW consist of two electrostatic ion cyclotron waves. The resulting expression matches the observed heating eficiency in a BEW laboratory experiment to within an order of magnitude, and the low eficiency values observed in this laboratory experiment are shown to be the result of an unfavorable set of plasma parameters where the ratio of wave phase velocity to ion thermal velocity is exceptionally high. In order to examine the effcacy of BEWH for an electrothermal propulsion concept, the plasma parameter space of a typical radiofrequency plasma propulsion concept with a lower ratio of wave to ion velocity is investigated. It is shown that under these conditions, BEW heating is capable of reaching high effciency levels.

Original languageEnglish (US)
Title of host publication47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011
StatePublished - Dec 1 2011
Event47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011 - San Diego, CA, United States
Duration: Jul 31 2011Aug 3 2011

Publication series

Name47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011

Other

Other47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011
Country/TerritoryUnited States
CitySan Diego, CA
Period7/31/118/3/11

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Eficiency of plasma heating with beating electrostatic waves'. Together they form a unique fingerprint.

Cite this