Abstract
The asymptotic validity of tests is usually established by making appropriate primitive assumptions, which imply the weak convergence of a specific function of the data, and an appeal to the continuous mapping theorem. This paper, instead, takes the weak convergence of some function of the data to a limiting random element as the starting point and studies efficiency in the class of tests that remain asymptotically valid for all models that induce the same weak limit. It is found that efficient tests in this class are simply given by efficient tests in the limiting problem-that is, with the limiting random element assumed observed-evaluated at sample analogues. Efficient tests in the limiting problem are usually straightforward to derive, even in nonstandard testing problems. What is more, their evaluation at sample analogues typically yields tests that coincide with suitably robustified versions of optimal tests in canonical parametric versions of the model. This paper thus establishes an alternative and broader sense of asymptotic efficiency for many previously derived tests in econometrics, such as tests for unit roots, parameter stability tests, and tests about regression coefficients under weak instruments.
Original language | English (US) |
---|---|
Pages (from-to) | 395-435 |
Number of pages | 41 |
Journal | Econometrica |
Volume | 79 |
Issue number | 2 |
DOIs | |
State | Published - Mar 2011 |
All Science Journal Classification (ASJC) codes
- Economics and Econometrics
Keywords
- Robustness
- Semiparametric efficiency
- Unit root test