Abstract
We present BRIEE (Block-structured Representation learning with Interleaved Explore Exploit), an algorithm for efficient reinforcement learning in Markov Decision Processes with block structured dynamics (i.e., Block MDPs), where rich observations are generated from a set of unknown latent states. BRIEE interleaves latent states discovery, exploration, and exploitation together, and can provably learn a near-optimal policy with sample complexity scaling polynomially in the number of latent states, actions, and the time horizon, with no dependence on the size of the potentially infinite observation space. Empirically, we show that BRIEE is more sample efficient than the state-of-art Block MDP algorithm HOMER and other empirical RL baselines on challenging rich-observation combination lock problems which require deep exploration.
Original language | English (US) |
---|---|
Pages (from-to) | 26517-26547 |
Number of pages | 31 |
Journal | Proceedings of Machine Learning Research |
Volume | 162 |
State | Published - 2022 |
Event | 39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States Duration: Jul 17 2022 → Jul 23 2022 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability