TY - GEN
T1 - Efficient Non-conjugate Gaussian Process Factor Models for Spike Count Data using Polynomial Approximations
AU - Keeley, Stephen L.
AU - Zoltowski, David M.
AU - Yu, Yiyi
AU - Yates, Jacob L.
AU - Smith, Spencer L.
AU - Pillow, Jonathan W.
N1 - Publisher Copyright:
© 2020 by the Authors.
PY - 2020
Y1 - 2020
N2 - Gaussian Process Factor Analysis (GPFA) has been broadly applied to the problem of identifying smooth, low-dimensional temporal structure underlying large-scale neural recordings. However, spike trains are non-Gaussian, which motivates combining GPFA with discrete observation models for binned spike count data. The drawback to this approach is that GPFA priors are not conjugate to count model likelihoods, which makes inference challenging. Here we address this obstacle by introducing a fast, approximate inference method for non-conjugate GPFA models. Our approach uses orthogonal second-order polynomials to approximate the nonlinear terms in the non-conjugate log-likelihood, resulting in a method we refer to as polynomial approximate log-likelihood (PAL) estimators. This approximation allows for accurate closed-form evaluation of marginal likelihoods and fast numerical optimization for parameters and hyperparameters. We derive PAL estimators for GPFA models with binomial, Poisson, and negative binomial observations and find the PAL estimation is highly accurate, and achieves faster convergence times compared to existing state-of-The-Art inference methods. We also find that PAL hyperparameters can provide sensible initialization for black box variational inference (BBVI), which improves BBVI accuracy. We demonstrate that PAL estimators achieve fast and accurate extraction of latent structure from multi-neuron spike train data.1.
AB - Gaussian Process Factor Analysis (GPFA) has been broadly applied to the problem of identifying smooth, low-dimensional temporal structure underlying large-scale neural recordings. However, spike trains are non-Gaussian, which motivates combining GPFA with discrete observation models for binned spike count data. The drawback to this approach is that GPFA priors are not conjugate to count model likelihoods, which makes inference challenging. Here we address this obstacle by introducing a fast, approximate inference method for non-conjugate GPFA models. Our approach uses orthogonal second-order polynomials to approximate the nonlinear terms in the non-conjugate log-likelihood, resulting in a method we refer to as polynomial approximate log-likelihood (PAL) estimators. This approximation allows for accurate closed-form evaluation of marginal likelihoods and fast numerical optimization for parameters and hyperparameters. We derive PAL estimators for GPFA models with binomial, Poisson, and negative binomial observations and find the PAL estimation is highly accurate, and achieves faster convergence times compared to existing state-of-The-Art inference methods. We also find that PAL hyperparameters can provide sensible initialization for black box variational inference (BBVI), which improves BBVI accuracy. We demonstrate that PAL estimators achieve fast and accurate extraction of latent structure from multi-neuron spike train data.1.
UR - http://www.scopus.com/inward/record.url?scp=85105126108&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105126108&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105126108
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 5133
EP - 5142
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -