Abstract
We develop a new active learning algorithm for the streaming setting satisfying three important properties:1) It provably works for any classifier representation and classification problem including those with severe noise. 2) It is efficiently implementable with an ERM oracle. 3) It is more aggressive than all previous approaches satisfying 1 and 2. To do this, we create an algorithm based on a newly defined optimization problem and analyze it. We also conduct the first experimental analysis of all efficient agnostic active learning algorithms, evaluating their strengths and weaknesses in different settings.
Original language | English (US) |
---|---|
Pages (from-to) | 2755-2763 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2015-January |
State | Published - 2015 |
Externally published | Yes |
Event | 29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada Duration: Dec 7 2015 → Dec 12 2015 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing