Effects of surface tension on the Richtmyer-Meshkov instability in fully compressible and inviscid fluids

Kaitao Tang, Wouter Mostert, Daniel Fuster, Luc Deike

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Novel numerical simulations investigating the Richtmyer-Meshkov instability (RMI) with surface tension are presented. We solve the two-phase compressible Euler equation with surface tension and interface reconstruction by a volume-of-fluid method. We validate and bridge existing theoretical models of effects of surface tension on the RMI in the linear, transitional, and nonlinear postshock growth regimes. After deriving a consistent nondimensional formulation from an existing linear incompressible theory predicting perturbation development under large surface tension, we find good agreement with theoretical prediction in the small-amplitude (linear) oscillatory regime for positive Atwood numbers, and we show that negative Atwood numbers can be accommodated by an appropriate modification to the theory. Next, we show good agreement with nonlinear theory for asymptotic interface growth in the limit of small surface tension. Finally, we use the nondimensional formulation to define a heuristic criterion which identifies the transition from the linear regime to the nonlinear regime at intermediate surface tension. These results highlight the utility of this numerical method for compressible problems featuring surface tension, and they pave the way for a broader investigation into mixed compressible/incompressible problems.

Original languageEnglish (US)
Article number113901
JournalPhysical Review Fluids
Issue number11
StatePublished - Nov 2021

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Effects of surface tension on the Richtmyer-Meshkov instability in fully compressible and inviscid fluids'. Together they form a unique fingerprint.

Cite this