TY - JOUR
T1 - Effects of Polarization on Particle-Laden Flows
AU - Kolehmainen, Jari
AU - Ozel, Ali
AU - Gu, Yile
AU - Shinbrot, Troy
AU - Sundaresan, Sankaran
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/9/21
Y1 - 2018/9/21
N2 - Simulations of particle-laden flow with dielectric particles are carried out with varying levels of electrical charging and particle polarization. Simulation results reveal three distinct flow regions. For low particle charge and polarizability, flow is nearly symmetric and nonmeandering. For strong charging and polarization, particles form a continuous and tightly clustered sheet close to one of the walls. Between these extremes, particles form localized particle-rich regions, around which the gas executes a meandering flow. These results indicate that polarization can lead to qualitative changes in the characteristics of particle-laden flows subject to tribocharging.
AB - Simulations of particle-laden flow with dielectric particles are carried out with varying levels of electrical charging and particle polarization. Simulation results reveal three distinct flow regions. For low particle charge and polarizability, flow is nearly symmetric and nonmeandering. For strong charging and polarization, particles form a continuous and tightly clustered sheet close to one of the walls. Between these extremes, particles form localized particle-rich regions, around which the gas executes a meandering flow. These results indicate that polarization can lead to qualitative changes in the characteristics of particle-laden flows subject to tribocharging.
UR - http://www.scopus.com/inward/record.url?scp=85053805510&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053805510&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.121.124503
DO - 10.1103/PhysRevLett.121.124503
M3 - Article
C2 - 30296164
AN - SCOPUS:85053805510
SN - 0031-9007
VL - 121
JO - Physical review letters
JF - Physical review letters
IS - 12
M1 - 124503
ER -