Abstract
We reanalyze data collected with the DarkSide-50 experiment and recently used to set limits on the spinindependent interaction rate of weakly interacting massive particles (WIMPs) on argon nuclei with an effective field theory framework. The dataset corresponds to a total (16660 ± 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We obtain upper limits on the effective couplings of the 12 leading operators in the nonrelativistic systematic expansion. For each effective coupling we set constraints on WIMP-nucleon cross sections, setting upper limits between 2.4 × 10-45 cm2 and 2.3 × 10-42 cm2 (8.9 × 10-45 cm2 and 6.0 × 10-42 cm2) for WIMPs of mass of 100 GeV=c2 (1000 GeV=c2) at 90% confidence level.
Original language | English (US) |
---|---|
Article number | 062002 |
Journal | Physical Review D |
Volume | 101 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Effective field theory interactions for liquid argon target in DarkSide-50 experiment'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review D, Vol. 101, No. 6, 062002, 15.03.2020.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Effective field theory interactions for liquid argon target in DarkSide-50 experiment
AU - Agnes, P.
AU - Albuquerque, I. F.M.
AU - Alexander, T.
AU - Alton, A. K.
AU - Ave, M.
AU - Back, H. O.
AU - Batignani, G.
AU - Biery, K.
AU - Bocci, V.
AU - Bonfini, G.
AU - Bonivento, W. M.
AU - Bottino, B.
AU - Bussino, S.
AU - Cadeddu, M.
AU - Cadoni, M.
AU - Calaprice, F.
AU - Caminata, A.
AU - Canci, N.
AU - Candela, A.
AU - Caravati, M.
AU - Cariello, M.
AU - Carlini, M.
AU - Carpinelli, M.
AU - Catalanotti, S.
AU - Cataudella, V.
AU - Cavalcante, P.
AU - Cavuoti, S.
AU - Chepurnov, A.
AU - Cicalò, C.
AU - Cocco, A. G.
AU - Covone, G.
AU - D'Angelo, D.
AU - Davini, S.
AU - De Candia, A.
AU - De Cecco, S.
AU - De Deo, M.
AU - De Filippis, G.
AU - De Rosa, G.
AU - Derbin, A. V.
AU - Devoto, A.
AU - Di Eusanio, F.
AU - D'Incecco, M.
AU - Di Pietro, G.
AU - Dionisi, C.
AU - Downing, M.
AU - D'Urso, D.
AU - Edkins, E.
AU - Empl, A.
AU - Fiorillo, G.
AU - Fomenko, K.
AU - Franco, D.
AU - Gabriele, F.
AU - Galbiati, C.
AU - Ghiano, C.
AU - Giagu, S.
AU - Giganti, C.
AU - Giovanetti, G. K.
AU - Gorchakov, O.
AU - Goretti, A. M.
AU - Granato, F.
AU - Grobov, A.
AU - Gromov, M.
AU - Guan, M.
AU - Guardincerri, Y.
AU - Gulino, M.
AU - Hackett, B. R.
AU - Herner, K.
AU - Hosseini, B.
AU - Hughes, D.
AU - Humble, P.
AU - Hungerford, E. V.
AU - Ianni, Al
AU - Ianni, An
AU - Ippolito, V.
AU - Johnson, T. N.
AU - Keeter, K.
AU - Kendziora, C. L.
AU - Kochanek, I.
AU - Koh, G.
AU - Korablev, D.
AU - Korga, G.
AU - Kubankin, A.
AU - Kuss, M.
AU - La Commara, M.
AU - Lai, M.
AU - Li, X.
AU - Lissia, M.
AU - Longo, G.
AU - Machado, A. A.
AU - Machulin, I. N.
AU - Mandarano, A.
AU - Mapelli, L.
AU - Mari, S. M.
AU - Maricic, J.
AU - Martoff, C. J.
AU - Messina, A.
AU - Meyers, P. D.
AU - Milincic, R.
AU - Monte, A.
AU - Morrocchi, M.
AU - Muratova, V. N.
AU - Musico, P.
AU - Agasson, A. Navrer
AU - Nozdrina, A. O.
AU - Oleinik, A.
AU - Orsini, M.
AU - Ortica, F.
AU - Pagani, L.
AU - Pallavicini, M.
AU - Pandola, L.
AU - Pantic, E.
AU - Paoloni, E.
AU - Pelczar, K.
AU - Pelliccia, N.
AU - Picciau, E.
AU - Pocar, A.
AU - Pordes, S.
AU - Poudel, S. S.
AU - Qian, H.
AU - Ragusa, F.
AU - Razeti, M.
AU - Razeto, A.
AU - Renshaw, A. L.
AU - Rescigno, M.
AU - Riffard, Q.
AU - Romani, A.
AU - Rossi, B.
AU - Rossi, N.
AU - Sablone, D.
AU - Samoylov, O.
AU - Sands, W.
AU - Sanfilippo, S.
AU - Savarese, C.
AU - Schlitzer, B.
AU - Segreto, E.
AU - Semenov, D. A.
AU - Shchagin, A.
AU - Sheshukov, A.
AU - Singh, P. N.
AU - Skorokhvatov, M. D.
AU - Smirnov, O.
AU - Sotnikov, A.
AU - Stanford, C.
AU - Stracka, S.
AU - Suvorov, Y.
AU - Tartaglia, R.
AU - Testera, G.
AU - Tonazzo, A.
AU - Trinchese, P.
AU - Unzhakov, E. V.
AU - Verducci, M.
AU - Vishneva, A.
AU - Vogelaar, R. B.
AU - Wada, M.
AU - Waldrop, T. J.
AU - Wang, H.
AU - Wang, Y.
AU - Watson, A. W.
AU - Westerdale, S.
AU - Wojcik, M. M.
AU - Xiang, X.
AU - Xiao, X.
AU - Yang, C.
AU - Ye, Z.
AU - Zhu, C.
AU - Zuzel, G.
N1 - Funding Information: The DarkSide Collaboration offers its profound gratitude to the LNGS and its staff for their invaluable technical and logistical support. We also thank the Fermilab Particle Physics, Scientific, and Core Computing Divisions. Construction and operation of the DarkSide-50 detector was supported by the U.S. National Science Foundation (NSF) (Grants No. PHY-0919363, No. PHY-1004072, No. PHY-1004054, No. PHY-1242585, No. PHY-1314483, No. PHY-1314501, No. PHY-1314507, No. PHY-1352795, No. PHY-1622415, and associated collaborative grants No. PHY-1211308 and No. PHY-1455351), the Italian Istituto Nazionale di Fisica Nucleare, the U.S. Department of Energy (Contracts No. DE-FG02-91ER40671, No. DEAC02-07CH11359, and No. DE-AC05-76RL01830), the Russian Science Foundation (Grant No. 18-72-00211), the Polish NCN (Grant No. UMO-2014/15/B/ST2/02561) and the Foundation for Polish Science (Grant No. Team2016-2/ 17). We also acknowledge financial support from the French Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), the UnivEarthS Labex program of Sorbonne Paris Cité (Grants No. ANR-10-LABX-0023 and No. ANR-11-IDEX-0005-02), and from the São Paulo Research Foundation (FAPESP) (Grant No. 2016/09084-0). Isotopes used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics. Funding Information: The DarkSide Collaboration offers its profound gratitude to the LNGS and its staff for their invaluable technical and logistical support. We also thank the Fermilab Particle Physics, Scientific, and Core Computing Divisions. Construction and operation of the DarkSide-50 detector was supported by the U.S. National Science Foundation (NSF) (Grants No. PHY-0919363, No. PHY-1004072, No. PHY-1004054, No. PHY-1242585, No. PHY- 1314483, No. PHY-1314501, No. PHY-1314507, No. PHY-1352795, No. PHY-1622415, and associated collaborative grants No. PHY-1211308 and No. PHY- 1455351), the Italian Istituto Nazionale di Fisica Nucleare, the U.S. Department of Energy (Contracts No. DE-FG02-91ER40671, No. DEAC02-07CH11359, and No. DE-AC05-76RL01830), the Russian Science Foundation (Grant No. 18-72-00211), the Polish NCN (Grant No. UMO-2014/15/B/ST2/02561) and the Foundation for Polish Science (Grant No. Team2016-2/ 17). We also acknowledge financial support from the French Institut National de Physique Nucl?aire et de Physique des Particules (IN2P3), the UnivEarthS Labex program of Sorbonne Paris Cit? (Grants No. ANR-10- LABX-0023 and No. ANR-11-IDEX-0005-02), and from the S?o Paulo Research Foundation (FAPESP) (Grant No. 2016/09084-0). Isotopes used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.*%blankline%* Publisher Copyright: © 2020 American Physical Society.
PY - 2020/3/15
Y1 - 2020/3/15
N2 - We reanalyze data collected with the DarkSide-50 experiment and recently used to set limits on the spinindependent interaction rate of weakly interacting massive particles (WIMPs) on argon nuclei with an effective field theory framework. The dataset corresponds to a total (16660 ± 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We obtain upper limits on the effective couplings of the 12 leading operators in the nonrelativistic systematic expansion. For each effective coupling we set constraints on WIMP-nucleon cross sections, setting upper limits between 2.4 × 10-45 cm2 and 2.3 × 10-42 cm2 (8.9 × 10-45 cm2 and 6.0 × 10-42 cm2) for WIMPs of mass of 100 GeV=c2 (1000 GeV=c2) at 90% confidence level.
AB - We reanalyze data collected with the DarkSide-50 experiment and recently used to set limits on the spinindependent interaction rate of weakly interacting massive particles (WIMPs) on argon nuclei with an effective field theory framework. The dataset corresponds to a total (16660 ± 270) kg d exposure using a target of low-radioactivity argon extracted from underground sources. We obtain upper limits on the effective couplings of the 12 leading operators in the nonrelativistic systematic expansion. For each effective coupling we set constraints on WIMP-nucleon cross sections, setting upper limits between 2.4 × 10-45 cm2 and 2.3 × 10-42 cm2 (8.9 × 10-45 cm2 and 6.0 × 10-42 cm2) for WIMPs of mass of 100 GeV=c2 (1000 GeV=c2) at 90% confidence level.
UR - http://www.scopus.com/inward/record.url?scp=85083435153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083435153&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.101.062002
DO - 10.1103/PhysRevD.101.062002
M3 - Article
AN - SCOPUS:85083435153
SN - 2470-0010
VL - 101
JO - Physical Review D
JF - Physical Review D
IS - 6
M1 - 062002
ER -