Economic MPC and real-time decision making with application to large-scale HVAC energy systems

James B. Rawlings, Nishith R. Patel, Michael J. Risbeck, Christos T. Maravelias, Michael J. Wenzel, Robert D. Turney

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


With the potential to decrease operating costs and improve energy efficiency, model predictive control (MPC) has been proposed as a replacement for traditional heuristic, PID, and other conventional control strategies for heating, ventilation, and air conditioning (HVAC) systems in commercial buildings. Due to the size of large commercial HVAC systems, implementing MPC as a single monolithic optimization problem is not practical nor desirable given real-time operating requirements. In this paper, we present a hierarchical decomposition for economic MPC in large-scale commercial HVAC systems using a two-layer approach. We show a sample optimization for a campus of 25 buildings with 500 total zones and a central plant consisting of eight chillers. Then, we discuss an application of the ideas presented here in the recently completed $485-million replacement of the Stanford campus heating and cooling systems and conclude with some of the control theory challenges presented by this new class of applications.

Original languageEnglish (US)
Pages (from-to)89-98
Number of pages10
JournalComputers and Chemical Engineering
StatePublished - Jun 9 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Computer Science Applications


  • Commercial buildings
  • Decomposition
  • Model predictive control
  • Optimization
  • Scheduling


Dive into the research topics of 'Economic MPC and real-time decision making with application to large-scale HVAC energy systems'. Together they form a unique fingerprint.

Cite this