Abstract
Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm for understanding and modelling hillslope hydrologic processes is still based on the Darcy-Richards matric flow framework, now with a set of additional methods to attempt to reproduce some of the aggregate function of the two-phase system of network and matrix flow. We call for a community effort to design and implement a set of well planned experiments in different natural and constructed hillslopes, coupled with the development of new theory and methods to explicitly incorporate and couple the co-evolution of subsurface flow networks as intrinsic components of hydrological, ecological and geomorphic systems. This is a major community challenge that can now benefit from new experimental infrastructure, renewal of older infrastructure and recent advances in sensor systems and computational capacity but will also require a sustained and organized interdisciplinary approach.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 1073-1078 |
| Number of pages | 6 |
| Journal | Ecohydrology |
| Volume | 7 |
| Issue number | 4 |
| DOIs | |
| State | Published - Aug 2014 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Ecology, Evolution, Behavior and Systematics
- Aquatic Science
- Ecology
- Earth-Surface Processes
Keywords
- Co-evolution
- Community challenge
- Flow networks
- Hillslope hydrology