Earlier phenology of a nonnative plant increases impacts on native competitors

Jake M. Alexander, Jonathan M. Levine

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


Adaptation to climate is expected to increase the performance of invasive species and their community-level impacts. However, while the fitness gains from adaptation should, in general, promote invader competitive ability, empirical demonstrations of this prediction are scarce. Furthermore, climate adaptation, in the form of altered timing of life cycle transitions, should affect the phenological overlap between nonnative and native competitors, with potentially large, but poorly tested, impacts on native species persistence. We evaluated these predictions by growing native California grassland plants in competition with nonnative Lactuca serriola, a species that flowers earlier in parts of its nonnative range that are drier than its putative European source region. In common garden experiments in southern California with L. serriola populations differing in phenology, plants originating from arid climates bolted up to 48 d earlier than plants from more mesic climates, and selection favored early flowering, supporting an adaptive basis for the phenology cline. The per capita competitive effects of L. serriola from early flowering populations on five early flowering native species were greater than the effects of L. serriola from later flowering populations. Consequently, the ability of the native species to increase when rare in competition with L. serriola, as inferred from field-parameterized competition models, declined with earlier L. serriola phenology. Indeed, changes to L. serriola phenology affected whether or not one native species was predicted to persist in competitionwith L. serriola. Our results suggest that evolution in response to new climatic conditions can have important consequences for species interactions, and enhance the impacts of biological invasions on natural communities.

Original languageEnglish (US)
Pages (from-to)6199-6204
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number13
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • General


  • Biological invasions
  • Coexistence
  • Competition
  • Ecoevolutionary dynamics
  • Phenology


Dive into the research topics of 'Earlier phenology of a nonnative plant increases impacts on native competitors'. Together they form a unique fingerprint.

Cite this