Dynamics of plasma atomic layer etching: Molecular dynamics simulations and optical emission spectroscopy

Joseph R. Vella, Qinzhen Hao, Vincent M. Donnelly, David B. Graves

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Atomic layer etching is intrinsically dynamic as it involves sequential and repeated exposures of a surface to be etched with different species at different energies. The composition and structure of the near surface region change in both time and depth. Full understanding of this process requires resolving both temporal and spatial variations. In this work, we consider silicon (Si) atomic layer etching (ALE) by alternating exposure to chlorine gas (Cl 2 ) and argon ions (Ar + ). Molecular dynamics (MD) simulations are compared to experimental measurements with the aim of better understanding the dynamics of ALE and to test the simulation procedure. The simulations help to more fully interpret the experimental measurements. Optical emission measured just above the surface being etched can be related to etch products and can, therefore, be directly compared to simulation predictions. The simulations capture the measured initial product distribution leaving the surface and match the measured etch per cycle reasonably well. While simulations demonstrate the importance of ion-induced surface damage and mixing into a layer below the surface, the depth of which depends mainly on ion energy, the experiments suggest there is more Cl mixed into the layer than the MD procedure predicts.

Original languageEnglish (US)
Article number062602
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Volume41
Issue number6
DOIs
StatePublished - Dec 1 2023

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Dynamics of plasma atomic layer etching: Molecular dynamics simulations and optical emission spectroscopy'. Together they form a unique fingerprint.

Cite this