Dynamic Causal Learning

David Danks, Thomas L. Griffiths, Joshua B. Tenenbaum

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Current psychological theories of human causal learning and judgment focus primarily on long-run predictions: two by estimating parameters of a causal Bayes nets (though for different parameterizations), and a third through structural learning. This paper focuses on people's short-run behavior by examining dynamical versions of these three theories, and comparing their predictions to a real-world dataset.

Original languageEnglish (US)
Title of host publicationNIPS 2002
Subtitle of host publicationProceedings of the 15th International Conference on Neural Information Processing Systems
EditorsSuzanna Becker, Sebastian Thrun, Klaus Obermayer
PublisherMIT Press Journals
Pages67-74
Number of pages8
ISBN (Electronic)0262025507, 9780262025508
StatePublished - 2002
Externally publishedYes
Event15th International Conference on Neural Information Processing Systems, NIPS 2002 - Vancouver, Canada
Duration: Dec 9 2002Dec 14 2002

Publication series

NameNIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems

Conference

Conference15th International Conference on Neural Information Processing Systems, NIPS 2002
Country/TerritoryCanada
CityVancouver
Period12/9/0212/14/02

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'Dynamic Causal Learning'. Together they form a unique fingerprint.

Cite this