TY - JOUR
T1 - Drying-induced atomic structural rearrangements in sodium-based calcium-alumino-silicate-hydrate gel and the mitigating effects of ZrO2 nanoparticles
AU - Yang, Kengran
AU - Özçelik, V. Ongun
AU - Garg, Nishant
AU - Gong, Kai
AU - White, Claire Emily
N1 - Publisher Copyright:
© 2018 the Owner Societies.
PY - 2018
Y1 - 2018
N2 - Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, for these gel materials the underlying nanoscopic alterations that are, in part, responsible for macroscopically-measured strain values (especially at low relative humidity) remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO2 cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0-2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO2 nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO2.
AB - Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, for these gel materials the underlying nanoscopic alterations that are, in part, responsible for macroscopically-measured strain values (especially at low relative humidity) remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO2 cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0-2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO2 nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO2.
UR - http://www.scopus.com/inward/record.url?scp=85044756287&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044756287&partnerID=8YFLogxK
U2 - 10.1039/c7cp07876e
DO - 10.1039/c7cp07876e
M3 - Article
C2 - 29557431
AN - SCOPUS:85044756287
SN - 1463-9076
VL - 20
SP - 8593
EP - 8606
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 13
ER -