Abstract
Cks is a small highly conserved protein that plays an important role in cell cycle control in different eukaryotes. Cks proteins have been implicated in entry into and exit from mitosis, by promoting Cyclin-dependent kinase (Cdk) activity on mitotic substrates. In yeast, Cks can promote exit from mitosis by transcriptional regulation of cell cycle regulators. Cks proteins have also been found to promote S-phase via an interaction with the SCFSkp2 Ubiquitination complex. We have characterized the Drosophila Cks gene, Cks30A and we find that it is required for progression through female meiosis and the mitotic divisions of the early embryo through an interaction with Cdk1. Cks30A mutants are compromised for Cyclin A destruction, resulting in an arrest or delay at the metaphase/anaphase transition, both in female meiosis and in the early syncytial embryo. Cks30A appears to regulate Cyclin A levels through the activity of a female germline-specific anaphase-promoting complex, CDC20-Cortex. We also find that a second closely related Cks gene, Cks85A, plays a distinct, non-overlapping role in Drosophila, and the two genes cannot functionally replace each other.
Original language | English (US) |
---|---|
Pages (from-to) | 3669-3678 |
Number of pages | 10 |
Journal | Development |
Volume | 132 |
Issue number | 16 |
DOIs | |
State | Published - Aug 2005 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Developmental Biology
Keywords
- Cell cycle
- Cks
- Drosophila
- Meiosis