Drainage of single Plateau borders: Direct observation of rigid and mobile interfaces

Stephan A. Koehler, Sascha Hilgenfeldt, Eric R. Weeks, Howard A. Stone

Research output: Contribution to journalArticle

94 Scopus citations

Abstract

Foam drainage varies with surfactant. We present direct measurements of the flow velocity profiles across single Plateau borders, which make up the interconnected channel-like network for liquid flow. For protein foams the interface is rigid, whereas small-surfactant foams show significant interfacial mobility. The results agree with a model that takes into account the shearing of the liquid-gas interface transverse to the flow direction. A significant consequence is that bubble size and liquid volume fraction in a foam affect the relative importance of surface rheology on the drainage behavior.

Original languageEnglish (US)
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume66
Issue number4
DOIs
StatePublished - Oct 9 2002

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Drainage of single Plateau borders: Direct observation of rigid and mobile interfaces'. Together they form a unique fingerprint.

  • Cite this