Abstract
Climatic statistical downscaling in arid and topographically complex river basins remains relatively lacking. To address this gap, climatic variables derived from a global climate model (GCM) ensemble were downscaled from a grid resolution of 2.5° × 2.5° down to the station level. For this purpose, a combination of multiple linear and logistic regressions was developed, calibrated and validated with regard to their predictions of monthly precipitation and daily temperature in the Jordan River Basin. Seasonal standardized predictors were selected using a backward stepwise regression. The validated models were used to examine future scenarios based on GCM simulations under two Representative Concentration Pathways (RCP4.5 and RCP8.5) for the period 2006–2050. The results showed a cumulative near-surface air temperature increase of 1.54 °C and 2.11 °C and a cumulative precipitation decrease of 100 mm and 135 mm under the RCP4.5 and RCP8.5, respectively, by 2050. This pattern will inevitably add stress to water resources, increasing management challenges in the semi-arid to arid regions of the basin. Moreover, the current application highlights the potential of adopting regression-based models to downscale GCM predictions and inform future water resources management in poorly monitored arid regions at the river basin scale.
Original language | English (US) |
---|---|
Article number | 27 |
Journal | Climate |
Volume | 12 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2024 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Atmospheric Science
Keywords
- climate change
- global circulation models
- Jordan River Basin
- statistical downscaling