Abstract
This paper proposes a new easy-to-implement parameter-free gradient-based optimizer: DoWG (Distance over Weighted Gradients). We prove that DoWG is efficient-matching the convergence rate of optimally tuned gradient descent in convex optimization up to a logarithmic factor without tuning any parameters, and universal-automatically adapting to both smooth and nonsmooth problems. While popular algorithms following the AdaGrad framework compute a running average of the squared gradients to use for normalization, DoWG maintains a new distance-based weighted version of the running average, which is crucial to achieve the desired properties. To complement our theory, we also show empirically that DoWG trains at the edge of stability, and validate its effectiveness on practical machine learning tasks.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 36 |
State | Published - 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States Duration: Dec 10 2023 → Dec 16 2023 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing