DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes

Jonathan S. Huff, Paul H. Davis, Allison Christy, Donald L. Kellis, Nirmala Kandadai, Zi S.D. Toa, Gregory D. Scholes, Bernard Yurke, William B. Knowlton, Ryan D. Pensack

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Molecular excitons are used in a variety of applications including light harvesting, optoelectronics, and nanoscale computing. Controlled aggregation via covalent attachment of dyes to DNA templates is a promising aggregate assembly technique that enables the design of extended dye networks. However, there are few studies of exciton dynamics in DNA-templated dye aggregates. We report time-resolved excited-state dynamics measurements of two cyanine-based dye aggregates, a J-like dimer and an H-like tetramer, formed through DNA-templating of covalently attached dyes. Time-resolved fluorescence and transient absorption indicate that nonradiative decay, in the form of internal conversion, dominates the aggregate ground state recovery dynamics, with singlet exciton lifetimes on the order of tens of picoseconds for the aggregates versus nanoseconds for the monomer. These results highlight the importance of circumventing nonradiative decay pathways in the future design of DNA-templated dye aggregates.

Original languageEnglish (US)
Pages (from-to)2386-2392
Number of pages7
JournalJournal of Physical Chemistry Letters
Issue number10
StatePublished - May 16 2019

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Physical and Theoretical Chemistry


Dive into the research topics of 'DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes'. Together they form a unique fingerprint.

Cite this