Distributed rating prediction in user generated content streams

Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau, Margaret Rose Martonosi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Recommender systems predict user preferences based on a range of available information. For systems in which users generate streams of content (e.g., blogs, periodically-updated newsfeeds), users may rate the produced content that they read, and be given accurate predictions about future content they are most likely to prefer. We design a distributed mechanism for predicting user ratings that avoids the disclosure of information to a centralized authority or an untrusted third party: users disclose the rating they give to certain content only to the user that produced this content. We demonstrate how rating prediction in this context can be formulated as a matrix factorization problem. Using this intuition, we propose a distributed gradient descent algorithm for its solution that abides with the above restriction on how information is exchanged between users. We formally analyse the convergence properties of this algorithm, showing that it reduces a weighted root mean square error of the accuracy of predictions. Although our algorithm may be used many different ways, we evaluate it on the Neflix data set and prediction problem as a benchmark. In addition to the improved privacy properties that stem from its distributed nature, our algorithm is competitive with current centralized solutions. Finally, we demonstrate the algorithm's fast convergence in practice by conducting an online experiment with a prototype user-generated content exchange system implemented as a Facebook application.

Original languageEnglish (US)
Title of host publicationRecSys'11 - Proceedings of the 5th ACM Conference on Recommender Systems
Pages69-76
Number of pages8
DOIs
StatePublished - Dec 6 2011
Event5th ACM Conference on Recommender Systems, RecSys 2011 - Chicago, IL, United States
Duration: Oct 23 2011Oct 27 2011

Publication series

NameRecSys'11 - Proceedings of the 5th ACM Conference on Recommender Systems

Other

Other5th ACM Conference on Recommender Systems, RecSys 2011
CountryUnited States
CityChicago, IL
Period10/23/1110/27/11

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design
  • Information Systems

Keywords

  • distributed system
  • recommendation system

Fingerprint Dive into the research topics of 'Distributed rating prediction in user generated content streams'. Together they form a unique fingerprint.

  • Cite this

    Isaacman, S., Ioannidis, S., Chaintreau, A., & Martonosi, M. R. (2011). Distributed rating prediction in user generated content streams. In RecSys'11 - Proceedings of the 5th ACM Conference on Recommender Systems (pp. 69-76). (RecSys'11 - Proceedings of the 5th ACM Conference on Recommender Systems). https://doi.org/10.1145/2043932.2043948