TY - GEN
T1 - Distributed optimization of coupled systems with applications to network utility maximization
AU - Tan, Chee Wei
AU - Palomar, Daniel P.
AU - Chiang, Mung
PY - 2006
Y1 - 2006
N2 - In Network Utility Maximization (NUM) problems, it is generally assumed that user utilities are uncoupled, i.e., each utility depends only on local variables. Then the coupling in constraint functions among users sharing common resources can be decoupled by standard methods such as dual decomposition. However, in problems where cooperation or competition is modeled through the objective function, such as rate allocation in clustered system and power control in interference limited system, each utility may depend not only on its local variables but also on the local variables of other utilities. Applications of this coupled utility model include wireless power control and DSL spectrum management, where the utilities are functions of the Signal-to-Interference Ratios (SIR) that depend on the transmit powers of other users. We present a systematic approach of consistency pricing to decouple NUM problems with coupled utilities, obtaining distributed algorithms that efficiently handle couplings in utilities with two alternative timescales, as well as a method to reduce message passing overhead in the case of interference-based coupling.
AB - In Network Utility Maximization (NUM) problems, it is generally assumed that user utilities are uncoupled, i.e., each utility depends only on local variables. Then the coupling in constraint functions among users sharing common resources can be decoupled by standard methods such as dual decomposition. However, in problems where cooperation or competition is modeled through the objective function, such as rate allocation in clustered system and power control in interference limited system, each utility may depend not only on its local variables but also on the local variables of other utilities. Applications of this coupled utility model include wireless power control and DSL spectrum management, where the utilities are functions of the Signal-to-Interference Ratios (SIR) that depend on the transmit powers of other users. We present a systematic approach of consistency pricing to decouple NUM problems with coupled utilities, obtaining distributed algorithms that efficiently handle couplings in utilities with two alternative timescales, as well as a method to reduce message passing overhead in the case of interference-based coupling.
UR - http://www.scopus.com/inward/record.url?scp=33747250379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747250379&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33747250379
SN - 142440469X
SN - 9781424404698
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
SP - V981-V984
BT - 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing - Proceedings
T2 - 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006
Y2 - 14 May 2006 through 19 May 2006
ER -