Distributed collaborative filtering over social networks

Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau, Margaret Martonosi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recommender systems predict user preferences based on a range of available information. For systems in which users generate streams of content (e.g., blogs, periodically-updated newsfeeds), users may rate the produced content that they read, and be given accurate predictions about future content they are most likely to prefer. We design a distributed mechanism for predicting user ratings that avoids the disclosure of information to a centralized authority or an untrusted third party: users disclose the rating they give to certain content only to the user that produced this content. We demonstrate how rating prediction in this context can be formulated as a matrix factorization problem. Using this intuition, we propose a distributed gradient descent algorithm for its solution that abides with the above restriction on how information is exchanged between users. We formally analyse the convergence properties of this algorithm, showing that it reduces a weighted root mean square error of the accuracy of predictions. We also demonstrate how this technique can readily be used to offer optimal recommendation.

Original languageEnglish (US)
Title of host publication2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Pages1136-1142
Number of pages7
DOIs
StatePublished - 2011
Event2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011 - Monticello, IL, United States
Duration: Sep 28 2011Sep 30 2011

Publication series

Name2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011

Other

Other2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Country/TerritoryUnited States
CityMonticello, IL
Period9/28/119/30/11

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Distributed collaborative filtering over social networks'. Together they form a unique fingerprint.

Cite this