Distributed algorithms for optimal rate-reliability tradeoff in networks

Jang Won Lee, Mung Chiang, A. Robert Calderbank

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The current framework of network utility maximization for distributed rate allocation assumes fixed channel code rates. However, by adapting the physical layer channel coding, different rate-reliability tradeoffs can be achieved on each link and for each end user. Consider a network where each user has a utility function that depends on both signal quality and data rate, and each link may provide a 'fatter' ('thinner') information 'pipe' by allowing a higher (lower) decoding error probability. We propose two distributed, pricing-based algorithms to attain optimal rate-reliability tradeoff, with an interpretation that each user provides its willingness to pay for reliability to the network and the network feeds back congestion prices to users. The proposed algorithms converge to a tradeoff point between rate and reliability, which is proved to be globally optimal for codes with sufficiently large codeword lengths and user utilities with sufficiently negative curvatures.

Original languageEnglish (US)
Title of host publicationProceedings of the 2005 IEEE International Symposium on Information Theory, ISIT 05
Pages2246-2250
Number of pages5
DOIs
StatePublished - 2005
Event2005 IEEE International Symposium on Information Theory, ISIT 05 - Adelaide, Australia
Duration: Sep 4 2005Sep 9 2005

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2005
ISSN (Print)2157-8099

Other

Other2005 IEEE International Symposium on Information Theory, ISIT 05
Country/TerritoryAustralia
CityAdelaide
Period9/4/059/9/05

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Distributed algorithms for optimal rate-reliability tradeoff in networks'. Together they form a unique fingerprint.

Cite this