Abstract
The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a system's energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example, generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In this paper, we consider the effect of damping on Euler-Poincaré (special reduced Lagrangian) systems which have been stabilized about an equilibrium using the method of controlled Lagrangians. We describe a choice of feedback dissipation which asymptotically stabilizes a sub-class of controlled Euler-Poincaré systems subject to physical damping. As an example, we consider intermediate axis rotation of a damped rigid body with a single internal rotor.
Original language | English (US) |
---|---|
Pages (from-to) | 3378-3383 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 4 |
State | Published - 2001 |
Externally published | Yes |
Event | 40th IEEE Conference on Decision and Control (CDC) - Orlando, FL, United States Duration: Dec 4 2001 → Dec 7 2001 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization