Abstract
We present the results of theoretical and experimental studies of dispersively coupled (or 'membrane in the middle') optomechanical systems. We calculate the linear optical properties of a high finesse cavity containing a thin dielectric membrane. We focus on the cavity's transmission, reflection and finesse as a function of the membrane's position along the cavity axis and as a function of its optical loss. We compare these calculations with measurements and find excellent agreement in cavities with empty-cavity finesses in the range 104-105. The imaginary part of the membrane's index of refraction is found to be ∼10-4. We calculate the laser cooling performance of this system, with a particular focus on the less-intuitive regime in which photons 'tunnel' through the membrane on a timescale comparable to the membrane's period of oscillation. Lastly, we present calculations of quantum non-demolition measurements of the membrane's phonon number in the low signal-to-noise regime where the phonon lifetime is comparable to the QND readout time.
Original language | English (US) |
---|---|
Article number | 095008 |
Journal | New Journal of Physics |
Volume | 10 |
DOIs | |
State | Published - Sep 30 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy