TY - JOUR
T1 - Disentangling Abstraction from Statistical Pattern Matching in Human and Machine Learning
AU - Kumar, Sreejan
AU - Dasgupta, Ishita
AU - Daw, Nathaniel D.
AU - Cohen, Jonathan D.
AU - Griffiths, Thomas L.
N1 - Publisher Copyright:
© 2023 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/8
Y1 - 2023/8
N2 - The ability to acquire abstract knowledge is a hallmark of human intelligence and is believed by many to be one of the core differences between humans and neural network models. Agents can be endowed with an inductive bias towards abstraction through meta-learning, where they are trained on a distribution of tasks that share some abstract structure that can be learned and applied. However, because neural networks are hard to interpret, it can be difficult to tell whether agents have learned the underlying abstraction, or alternatively statistical patterns that are characteristic of that abstraction. In this work, we compare the performance of humans and agents in a meta-reinforcement learning paradigm in which tasks are generated from abstract rules. We define a novel methodology for building “task metamers” that closely match the statistics of the abstract tasks but use a different underlying generative process, and evaluate performance on both abstract and metamer tasks. We find that humans perform better at abstract tasks than metamer tasks whereas common neural network architectures typically perform worse on the abstract tasks than the matched metamers. This work provides a foundation for characterizing differences between humans and machine learning that can be used in future work towards developing machines with more human-like behavior.
AB - The ability to acquire abstract knowledge is a hallmark of human intelligence and is believed by many to be one of the core differences between humans and neural network models. Agents can be endowed with an inductive bias towards abstraction through meta-learning, where they are trained on a distribution of tasks that share some abstract structure that can be learned and applied. However, because neural networks are hard to interpret, it can be difficult to tell whether agents have learned the underlying abstraction, or alternatively statistical patterns that are characteristic of that abstraction. In this work, we compare the performance of humans and agents in a meta-reinforcement learning paradigm in which tasks are generated from abstract rules. We define a novel methodology for building “task metamers” that closely match the statistics of the abstract tasks but use a different underlying generative process, and evaluate performance on both abstract and metamer tasks. We find that humans perform better at abstract tasks than metamer tasks whereas common neural network architectures typically perform worse on the abstract tasks than the matched metamers. This work provides a foundation for characterizing differences between humans and machine learning that can be used in future work towards developing machines with more human-like behavior.
UR - http://www.scopus.com/inward/record.url?scp=85170717527&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85170717527&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1011316
DO - 10.1371/journal.pcbi.1011316
M3 - Article
C2 - 37624841
AN - SCOPUS:85170717527
SN - 1553-734X
VL - 19
JO - PLoS computational biology
JF - PLoS computational biology
IS - 8 August
M1 - e1011316
ER -