Abstract
Global convergence of a stochastic adaptive control algorithm for discrete time linear systems is established. It is shown that, with probability one, the algorithm will ensure the system inputs and outputs are sample mean square bounded and the conditional mean square output tracking error achieves its global minimum possible value for linear feedback control. Thus, asymptotically, the adaptive control algorithm achieves the same performance as could be achieved if the system parameters were known.
Original language | English (US) |
---|---|
Pages (from-to) | 829-853 |
Number of pages | 25 |
Journal | SIAM Journal on Control and Optimization |
Volume | 19 |
Issue number | 6 |
DOIs | |
State | Published - Jan 1 1981 |
All Science Journal Classification (ASJC) codes
- Control and Optimization
- Applied Mathematics