Discrete solitons in photorefractive optically induced photonic lattices

Nikos K. Efremidis, Suzanne Sears, Demetrios N. Christodoulides, Jason W. Fleischer, Mordechai Segev

Research output: Contribution to journalArticlepeer-review

655 Scopus citations

Abstract

We demonstrate that optical discrete solitons are possible in appropriately oriented biased photorefractive crystals. This can be accomplished in optically induced periodic waveguide lattices that are created via plane-wave interference. Our method paves the way towards the observation of entirely new families of discrete solitons. These include, for example, discrete solitons in two-dimensional self-focusing and defocusing lattices of different group symmetries, incoherently coupled vector discrete solitons, discrete soliton states in optical diatomic chains, as well as their associated collision properties and interactions. We also present results concerning transport anomalies of discrete solitons that depend on their initial momentum within the Brillouin zone.

Original languageEnglish (US)
Pages (from-to)5
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume66
Issue number4
DOIs
StatePublished - Oct 2 2002

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Statistical and Nonlinear Physics
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Discrete solitons in photorefractive optically induced photonic lattices'. Together they form a unique fingerprint.

Cite this