Discovery of charge density wave in a kagome lattice antiferromagnet

Xiaokun Teng, Lebing Chen, Feng Ye, Elliott Rosenberg, Zhaoyu Liu, Jia Xin Yin, Yu Xiao Jiang, Ji Seop Oh, M. Zahid Hasan, Kelly J. Neubauer, Bin Gao, Yaofeng Xie, Makoto Hashimoto, Donghui Lu, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Robert J. Birgeneau, Jiun Haw Chu, Ming YiPengcheng Dai

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5–7, chiral magnetic order8,9, superconductivity and CDW order10–15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10–15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16–21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16–19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10–15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24–28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29–31, in which the CDW precedes or accompanies the magnetic order.

Original languageEnglish (US)
Pages (from-to)490-495
Number of pages6
JournalNature
Volume609
Issue number7927
DOIs
StatePublished - Sep 15 2022

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Discovery of charge density wave in a kagome lattice antiferromagnet'. Together they form a unique fingerprint.

Cite this