Direct Synthesis of 1-Butanol with High Faradaic Efficiency from CO2 Utilizing Cascade Catalysis at a Ni-Enhanced (Cr2O3)3Ga2O3 Electrocatalyst

Steve P. Cronin, Stephanie Dulovic, Josef A. Lawrence, Kai A. Filsinger, Alma Paola Hernandez-Gonzalez, Rebecca Evans, Joseph W. Stiles, Jalah Morris, István Pelczer, Andrew B. Bocarsly

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Electrochemical transformation of CO2 into energy-dense liquid fuels provides a viable solution to challenges regarding climate change and nonrenewable resource dependence. Here, we report on the modification of a Cr-Ga oxide electrocatalyst through the introduction of nickel to generate a catalyst that generates 1-butanol at unprecedented faradaic efficiencies (ξ = 42%). This faradaic efficiency occurs at −1.48 V vs Ag/AgCl, with 1-butanol production commencing at an overpotential of 320 mV. At this potential, minor products include formate, methanol, acetic acid, acetone, and 3-hydroxybutanal. At −1.0 and −1.4 V, 3-hydroxybutanal becomes the primary product. This is in contrast to the nickel-free (Cr2O3)3(Ga2O3) system, where neither 3-hydroxybutanal nor 1-butanol was detected. Mechanistic studies show that formate is the initial CO2 reduction product and identify acetaldehyde as the key intermediate. Nickel is found responsible for the coupling and reduction of acetaldehyde to generate the higher molecular weight carbon products observed. To the best of our knowledge, this is the first electrocatalyst to generate 1-butanol with high faradaic efficiency.

Original languageEnglish (US)
Pages (from-to)6762-6772
Number of pages11
JournalJournal of the American Chemical Society
Volume145
Issue number12
DOIs
StatePublished - Mar 29 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Direct Synthesis of 1-Butanol with High Faradaic Efficiency from CO2 Utilizing Cascade Catalysis at a Ni-Enhanced (Cr2O3)3Ga2O3 Electrocatalyst'. Together they form a unique fingerprint.

Cite this