Abstract
Crystalline Ni 3B with a fused porous nanoparticle network has been synthesized directly in solution using a modified polyol method. KBH 4 serves both as a reducing agent for Ni 2+ and as a boron source, while tetraethylene glycol serves as a solvent capable of achieving reaction temperatures that can crystallize Ni 3B. The reaction pathway was studied using X-ray diffraction, transmission electron microscopy, and electron diffraction, and a nucleation-aggregation-smoothing mechanism is proposed. Amorphous Ni-B alloy nanoparticles form first and then aggregate into larger networks, which crystallize and smooth to form porous crystalline Ni 3B nanoparticle networks. Structural characterization by X-ray diffraction indicates that the lattice constants for nanocrystalline Ni 3B are shifted relative to single-crystal Ni 3B, likely because of some carbon incorporation based on X-ray photoelectron spectroscopy data. Magnetic measurements suggest the formation of a small amount of nanocrystalline Ni, which provides further insight into the reaction pathway. Scanning electron microscopy and Brunauer-Emmett-Teller surface area measurements indicate a porous morphology, and thermal analysis shows that boronized nickel generated from Ni 3B is more resistant to oxidation than a similar sample of pure Ni.
Original language | English (US) |
---|---|
Pages (from-to) | 19846-19851 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 112 |
Issue number | 50 |
DOIs | |
State | Published - 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films