TY - GEN
T1 - Direct measurement of the applied-field component of the thrust of a lithium lorentz force accelerator
AU - Coogan, William J.
AU - Hepler, Michael A.
AU - Choueiri, Edgar Y.
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - The operation of an inverted-pendulum thrust stand designed to directly measure the applied-field thrust component of a steady-state applied-field magnetoplasmadynamic thruster is presented. This measurement, which is necessary for improving and validat- ing thrust models, is achieved by mechanically isolating the solenoid from the thruster so that the solenoid can move independently. The deflection of the solenoid is compared to deflection by known forces to determine the applied-field thrust component. The thrust stand is found to be accurate to ±9 mN over a total range of 1200 mN. Two measurement methods are implemented to account for tare forces resulting from azimuthal currents to the thruster electrodes and are shown to agree with one another. As a proof-of-concept, the first direct measurements of the applied-field component of the thrust from a 30 kW lithium Lorentz force accelerator operating at 400 A, 8 mg/s lithium mass flow rate, and 0.056 T applied-field strength give a measured force of 108 ± 14 mN. This measurement agrees with the value predicted by measuring the total thrust and subtracting out all other thrust components.
AB - The operation of an inverted-pendulum thrust stand designed to directly measure the applied-field thrust component of a steady-state applied-field magnetoplasmadynamic thruster is presented. This measurement, which is necessary for improving and validat- ing thrust models, is achieved by mechanically isolating the solenoid from the thruster so that the solenoid can move independently. The deflection of the solenoid is compared to deflection by known forces to determine the applied-field thrust component. The thrust stand is found to be accurate to ±9 mN over a total range of 1200 mN. Two measurement methods are implemented to account for tare forces resulting from azimuthal currents to the thruster electrodes and are shown to agree with one another. As a proof-of-concept, the first direct measurements of the applied-field component of the thrust from a 30 kW lithium Lorentz force accelerator operating at 400 A, 8 mg/s lithium mass flow rate, and 0.056 T applied-field strength give a measured force of 108 ± 14 mN. This measurement agrees with the value predicted by measuring the total thrust and subtracting out all other thrust components.
UR - http://www.scopus.com/inward/record.url?scp=84983567950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983567950&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84983567950
SN - 9781624104060
T3 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
BT - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
Y2 - 25 July 2016 through 27 July 2016
ER -