Direct and indirect effects of rotavirus vaccination: Comparing predictions from transmission dynamic models

Virginia E. Pitzer, Katherine E. Atkins, Birgitte Freiesleben de Blasio, Thierry van Effelterre, Christina J. Atchison, John P. Harris, Eunha Shim, Alison P. Galvani, W. John Edmunds, Cécile Viboud, Manish M. Patel, Bryan T. Grenfell, Umesh D. Parashar, Ben A. Lopman

Research output: Contribution to journalArticle

45 Scopus citations

Abstract

Early observations from countries that have introduced rotavirus vaccination suggest that there may be indirect protection for unvaccinated individuals, but it is unclear whether these benefits will extend to the long term. Transmission dynamic models have attempted to quantify the indirect protection that might be expected from rotavirus vaccination in developed countries, but results have varied. To better understand the magnitude and sources of variability in model projections, we undertook a comparative analysis of transmission dynamic models for rotavirus. We fit five models to reported rotavirus gastroenteritis (RVGE) data from England and Wales, and evaluated outcomes for short- and long-term vaccination effects. All of our models reproduced the important features of rotavirus epidemics in England and Wales. Models predicted that during the initial year after vaccine introduction, incidence of severe RVGE would be reduced 1.8-2.9 times more than expected from the direct effects of the vaccine alone (28-50% at 90% coverage), but over a 5-year period following vaccine introduction severe RVGE would be reduced only by 1.1-1.7 times more than expected from the direct effects (54-90% at 90% coverage). Projections for the long-term reduction of severe RVGE ranged from a 55% reduction at full coverage to elimination with at least 80% coverage. Our models predicted short-term reductions in the incidence of RVGE that exceeded estimates of the direct effects, consistent with observations from the United States and other countries. Some of the models predicted that the short-term indirect benefits may be offset by a partial shifting of the burden of RVGE to older unvaccinated individuals. Nonetheless, even when such a shift occurs, the overall reduction in severe RVGE is considerable. Discrepancies among model predictions reflect uncertainties about age variation in the risk and reporting of RVGE, and the duration of natural and vaccine-induced immunity, highlighting important questions for future research.

Original languageEnglish (US)
Article numbere42320
JournalPloS one
Volume7
Issue number8
DOIs
StatePublished - Aug 13 2012

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Direct and indirect effects of rotavirus vaccination: Comparing predictions from transmission dynamic models'. Together they form a unique fingerprint.

  • Cite this

    Pitzer, V. E., Atkins, K. E., de Blasio, B. F., van Effelterre, T., Atchison, C. J., Harris, J. P., Shim, E., Galvani, A. P., Edmunds, W. J., Viboud, C., Patel, M. M., Grenfell, B. T., Parashar, U. D., & Lopman, B. A. (2012). Direct and indirect effects of rotavirus vaccination: Comparing predictions from transmission dynamic models. PloS one, 7(8), [e42320]. https://doi.org/10.1371/journal.pone.0042320