Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M=Hf, Zr)

C. Chen, X. Xu, J. Jiang, S. C. Wu, Y. P. Qi, L. X. Yang, M. X. Wang, Y. Sun, N. B.M. Schröter, H. F. Yang, L. M. Schoop, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. LiuY. L. Chen

Research output: Contribution to journalArticle

69 Scopus citations

Abstract

Topological Dirac semimetals (TDSs) represent a new state of quantum matter recently discovered that offers a platform for realizing many exotic physical phenomena. A TDS is characterized by the linear touching of bulk (conduction and valance) bands at discrete points in the momentum space [i.e., three-dimensional (3D) Dirac points], such as in Na3Bi and Cd3As2. More recently, new types of Dirac semimetals with robust Dirac line nodes (with nontrivial topology or near the critical point between topological phase transitions) have been proposed that extend the bulk linear touching from discrete points to one-dimensional (1D) lines. In this paper, using angle-resolved photoemission spectroscopy (ARPES), we explored the electronic structure of the nonsymmorphic crystals MSiS (M=Hf, Zr). Remarkably, by mapping out the band structure in the full 3D Brillouin zone (BZ), we observed two sets of Dirac line-nodes in parallel with the kz axis and their dispersions. Interestingly, along directions other than the line nodes in the 3D BZ, the bulk degeneracy is lifted by spin-orbit coupling (SOC) in both compounds with larger magnitude in HfSiS. Our paper not only experimentally confirms a new Dirac line-node semimetal family protected by nonsymmorphic symmetry but also helps understanding and further exploring the exotic properties, as well as practical applications of the MSiS family of compounds.

Original languageEnglish (US)
Article number125126
JournalPhysical Review B
Volume95
Issue number12
DOIs
StatePublished - Mar 22 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M=Hf, Zr)'. Together they form a unique fingerprint.

  • Cite this

    Chen, C., Xu, X., Jiang, J., Wu, S. C., Qi, Y. P., Yang, L. X., Wang, M. X., Sun, Y., Schröter, N. B. M., Yang, H. F., Schoop, L. M., Lv, Y. Y., Zhou, J., Chen, Y. B., Yao, S. H., Lu, M. H., Chen, Y. F., Felser, C., Yan, B. H., ... Chen, Y. L. (2017). Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M=Hf, Zr). Physical Review B, 95(12), [125126]. https://doi.org/10.1103/PhysRevB.95.125126