Dimensionality reduction for stationary time series via stochastic nonconvex optimization

Minshuo Chen, Lin F. Yang, Mengdi Wang, Tuo Zhao

Research output: Contribution to journalConference articlepeer-review

8 Scopus citations

Abstract

Stochastic optimization naturally arises in machine learning. Efficient algorithms with provable guarantees, however, are still largely missing, when the objective function is nonconvex and the data points are dependent. This paper studies this fundamental challenge through a streaming PCA problem for stationary time series data. Specifically, our goal is to estimate the principle component of time series data with respect to the covariance matrix of the stationary distribution. Computationally, we propose a variant of Oja's algorithm combined with downsampling to control the bias of the stochastic gradient caused by the data dependency. Theoretically, we quantify the uncertainty of our proposed stochastic algorithm based on diffusion approximations. This allows us to prove the asymptotic rate of convergence and further implies near optimal asymptotic sample complexity. Numerical experiments are provided to support our analysis.

Original languageEnglish (US)
Pages (from-to)3496-3506
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Dimensionality reduction for stationary time series via stochastic nonconvex optimization'. Together they form a unique fingerprint.

Cite this