TY - GEN
T1 - Digital backpropagation in the nonlinear Fourier domain
AU - Wahls, Sander
AU - Le, Son T.
AU - Prilepsk, Jaroslaw E.
AU - Poor, H. Vincent
AU - Turitsyn, Sergei K.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/8/27
Y1 - 2015/8/27
N2 - Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schrödinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the nonlinear Schrödinger equation can be reverted analytically in the nonlinear Fourier domain through simple phase-shifts, there is no need to discretize the spatial domain. The proposed algorithm requires only OpDlog2 Dq floating point operations to backpropagate a signal given by D samples, independently of the fiber's length, and is therefore highly promising for real-time implementations. The merits of this new approach are illustrated through numerical simulations.
AB - Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schrödinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the nonlinear Schrödinger equation can be reverted analytically in the nonlinear Fourier domain through simple phase-shifts, there is no need to discretize the spatial domain. The proposed algorithm requires only OpDlog2 Dq floating point operations to backpropagate a signal given by D samples, independently of the fiber's length, and is therefore highly promising for real-time implementations. The merits of this new approach are illustrated through numerical simulations.
KW - Digital Backpropagation
KW - Nonlinear Fourier Transform
KW - Nonlinear Schrödinger Equation
KW - Optical Fiber
UR - http://www.scopus.com/inward/record.url?scp=84953389428&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84953389428&partnerID=8YFLogxK
U2 - 10.1109/SPAWC.2015.7227077
DO - 10.1109/SPAWC.2015.7227077
M3 - Conference contribution
AN - SCOPUS:84953389428
T3 - IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
SP - 445
EP - 449
BT - SPAWC 2015 - 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2015
Y2 - 28 June 2015 through 1 July 2015
ER -